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Topics overview 

1. A brief survey of percolation. Please include the definition of the percolation 
model, its applications, exact solution on Cayley tree, and exact solution of the 
percolation threshold on the square lattice. 

2. Exact solution of the mean-field Blume-Capel model. 

 

Please locate the line of the phase transitions, which is consisted of a line of 
critical point, a tricritical point, and a segment of 1st order transition. Summarize 
the behavior of the energy density, the specific heat, the magnetization density, 
the susceptibility, the vacancy density, the compressibility near the transition 
line, and as a function of temperature 1/K. Derive critical exponents. 

3. Ising model is an amazingly beautiful toy model in statistical mechanics. Please 
describe the exact solution of the Ising model in 1D (including partition sum and 
all observable quantities), the exact solution of the critical point on the square 
lattice. Summarize theoretical exponent for d>1. Summarize its generalization to 
the Potts model (ordinary and chiral). Can you locate the critical point of the 
ordinary Potts model on the square lattice (using the duality relation)? 

4. 4, Quantum Ising model plays an important role in quantum statistics. Its 
Hamiltonian is 

 

where sigma is the Pauli matrix. Please describe its phase transition. Using the 
path-integral language (Suzuki-Trotter formula), a d-dimensional quantum Ising 
model can be mapped onto a (d+1) dimensional quantum Ising model. Please 
derive this mapping. 

5. The classical XY model is frequently used to describe the universal behavior in 
the phase transition between Mott-insulator and superfluidity (or 
superconductivity). Please give reasoning why this is possible. Summarize the 
phase transition of the classical XY model in 1D, 2D, 3D, and more. Give the 
reasoning why the 2D XY model does not have long-ranged ordering at non-zero 
temperature (as rigorously as possible)—Mermin-Wagner theorem. 

6. In real worlds, we have bosons and fermions. By interchanging two of such 
particles, the phase of the wave function accumulates 0 and PI, respectively, for 



bosons and fermions. Their statistical behavior obeys the Bose-Einstein and the 
Fermi-Dirac statistics, respectively. Please derive them. In some 2D systems with 
strong interactions, however, the excitons—psedo-particles—do not obey either 
of the statistics. Interchanging two excitons can lead to a phase change of any 
value between 0 and 2 Pi. Such pseudo-particles are named “anyons”. They are 
used explain the quantum Hall effects as well as the recently discovered 
quantum Spin-Hall effects, and are found to have profound implication in 
quantum computation. Two beautiful models for anyons are the Kitaev model 
and the Wen model. Please give a survey of anyons and these two models. 

7. Define the renormalization group (RG) in the language of the Ginzburg-Landau 
model. Explain the universality by RG. Derive the Gaussian the fixed point and 
the associated critical  

8. Monte Carlo method is an important tool in researches, engineering, as well as in 
industries. In particular, Markovian-chain Monte Carlo (MCMC) method is found 
extensive applications in statistical physics. Please give a survey of MCMC. 
Design your own for the 2D Ising model; calculate energy, density, specific heat, 
magnetization density, and susceptibility. Locate the critical point, and calculate 
the associated critical exponents. 
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Percolation
Edited by Li,Zimeng

Contents:
1.Definition
2.Application
3.Exact Solution on Cayley Tree
4.Exact Solution on Square Lattice

The phase transition of Percolation is a typical Non-Hamiltonian System phase 
transition. It shows us property of continuous phase transition, and to some extent, in 
deep contact with the q-state Potts Model. This article would showcase a brief survey of 
a Percolation Model and its applications.

1.Definition

Suppose there is a hypercubic lattice G, with sites and bonds combining the nearest 

[1] Bond Percolation
The probability is p for a bond to be occupied, thus 1-p for those unoccupied. 
[2] Lattice Percolation
The probability is p for a site to be occupied, thus 1-p for those unoccupied.  

In both models above, clusters are formed when nearest occupied bonds or sites are 
joined together. We define P(p) as the probability that an infinitely large cluster is 
formed. It is easy to see and also by computer simulation, that P(p) = 0 when p < , and 

p significantly increases when it passes p , later reaches 1 when p = 1. We call pc

percolation threshold. It transpires that P(p) can be seen as the analogue of the order 
parameter of magnetic systems, which I will not proved here, q-states Potts Model.

2.Application
[1]Forest Fires
Percolation can be used to predict how long it takes a fire to penetrate the forest or to 
be extinguished. 

[2]Oil Fields
Percolation can be used as an idealized simple model for the distribution of oil or gas 



Adv. Sta. Phy. Homework 1 Percolation Li,Zimeng PB06203182

inside porous rocks in oil reservoirs.

[3]Diffusion in Disordered Media
Hydrogen atoms are known to diffuse through many solids, an effect which might 
become important for energy storage. A particularly simple disordered medium is our 
percolation lattice.

[4]Gelation

3.Exact Solution on Cayley Tree

Cayley Tree
Bethe lattice, or Cayley tree, have every of its sites connected with z neighbours, but 
none of them form loops. See Fig 3.1

 

Fig 3.1
Cayley Tree

As can be seen above, there is an origin site in the center, and around each site is its 
neighbours. Branches are all sites besides the origin site, and subbranches can also be 
defined similarly, but in the branch region.

therefore no wonder Cayley Tree is infinite dimension.

To get the percolation threshold of Cayley Tree, we start from the center, following the 
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path outward, to see if an infinitely large cluster is formed. We find z-1 new bonds 
emanating from every new site. So the probability that these new neighbours are 
occupied is p(z-1). If p(z-1)<1, we cannot find an infinitely large cluster which extend to 
the infinity, therefore the probability of an infinitely large cluster is formed, or P, is 
determined by p(z-1)=1, thus we get 

4.Exact Solution on Square Lattice
[1]Site Percolation
Currently, only numerical value of percolation threshold is done for site percolation in 
square lattice, and Pc here is 0.5927
[2]Bond Percolation
Bond Percolation can be exactly solved by using RG (Renormalized Group) method and 
the percolation threshold is 0.5

Coarse Grain Transformation
Suppose the lattice constant of square lattice is a. We pick out a cell (length=2a) and the 
probability that its bond is occupied is p'.

We can thus define the RG as 

where 

Here the total lattice bonds we need to consider is 5, which is easily seen in the 
following figure.
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p
a

p'

2a

The smallest generating structure is the blue
line

p

p

Fig 4.1

It's easily seen that p'=  (4.1)

Taking  as an example, referring to the blue line in Fig 4.1, if all the up bonds

are occupied, we have 

It the same when down bonds are all occupied. The third case is the case in Fig 4.1 
where the marked (with p) bond is occupied, and the case of its counterpart. Therefore 

we totally have 2

We now search for the fixed point in (4.1)
solutions for p

Because 0<p<1, so only  is applicable.
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p

0 1
0

1

(0.5,0.5)

It's easily seen that  is a unstable fixed point and so is the critical point.

Therefore  is the percolation threshold on square lattice.

Reference
1.Introduction to Percolation Theory 2nd ed - D. Stauffer, A. Aharony (T&F, 2003) WW
2.Yang, Z. R. (2007). "Quantum Statistic Physics." High Education Press: 421.
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Mean-Field Blume Capel Model
Edited by Li, Zimeng

Contents:
1. Definition
  1.1 Tricritical Ising Model
  1.2 Blume, Emery and Griffiths (BEG) Model
2. Phase Transition Diagram
3. Mean Field Solution of the Blume-Capel model
  3.1 One Dimension Case
  3.2 Two Dimension Case
  3.3 Observable and Critical Exponents
  
1. Definition
In order to introduce in the Blume Capel Model, we would like to take a review of the 
tricritical Ising model and the Blume, Emery and Griffiths (BEG) Model.

1.1 Tricritical Ising Model
The first generalization of Ising criticality is obtained when considering an Ising 
antiferromagnet with Hamiltonian 

, where  is called the staggered magnetic 

field.
It is easily drawn that the tricritical Ising model falls to normal Ising Model when 

 =0. When considering the Hamiltonian above fully, we can draw the phase 

diagram of the tricritical Ising model.See Fig 1.1.1
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Fig 1.1.1
In the above diagram, the (broken) first-order line and the (full) line of Ising critical 
points (second-order) meet at the tricritical point (Bt,Tt)shown as black dot.

Phase diagram of above has been realized in 3D metamagnetic systems such as Ising 
model with annealed vacancies,modeled by a vacancy variable 

and the Hamiltonian 

If we define , which takes the value , then we obtain the Blume Capel 

model with Hamiltonian

 (1.1.1)

1.2 Blume, Emery and Griffiths (BEG) Model
Historically, the Blume-Capel model is a simplification of the BEG model.The spin-1 
model 

 was introduced by Blume, Emery and Griffiths. Here 

J is the usual Ising coupling, a is the constant of biquadratic exchange and the parameter
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 stand for the interaction of the spins with the crystal field at each site i. If we set a=0, 
it becomes the Blume-Capel model (1.1.1) with B=0. Here .  is well known

for the normal Ising model, while  can be viewed as Ising model with vacancies, or 

zero occupation, or the site with spin annealed.(see Sec. 1.1)

2. Phase Transition Diagram

Considering  with B=0. It is easily drawn that when 

, and the model returns to normal Ising model because is limited value, 

thus the Hamiltonian is rewritten as Ising Hamiltonian:

Replace  with  (see Sec. 1.2), we rewrite the Hamiltonian of the simplified Blume-
Capel model as:

The ordered states with  have energy per site , while the state with  has 

zero energy.The ground state of an ordered state must thus guarantee the condition 
that , and we therefore conclude that there is a zero-temperature transition from 
the state with  to ordered state with  at . This is a first order transition, in 

the sense that there are discontinuities in the magnetization and the derivative of the 
energy with respect to .Also the correlation length is zero at this point, since there are 
no fluctuations.The first order transition must persist for some length since there is a 
convergent radius for the perturbation. Therefore, along the boundary of the ordered 
state and the disordered state, there is a change from the first order transition to the 
second order transition.And the transition point is called the tricritical point.The figure is
shown below: (We can compare it to the tricritical Ising model Fig 1.1.1)
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Fig 2.1
3. Mean Field Solution of the Blume-Capel model

Considering simplified Blume-Capel model Hamiltonian , where 

 is a factor when the sum of different sites is repeated twice.

3.1 One Dimension Case

The central idea of mean field theory is to approximate the interacting case  

by a simpler noninteracting partition function. 
We first rewrite 

 where
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Therefore the partition function can be written as 

, where N' is the number of sites which either spin 1 or spin -1 occupies.

The above derivation of the last equation can be found at Homework 1.[2] in the Email 
package.

We have free energy 

We can derive the critical point at which the free energy of the system is minimized, 
when we set to zero of the derivative of the free energy with respect to M. So we have 

 (3.1)

The solution of M can be obtained through graphical method. See Fig 3.1
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0 1 2 3

Fig 3.1
Alternatively, we can also draw the picture of f with respect to M to catch the critical 
point.
[1] Ising Model with 

When the Blume-Capel model just corresponds to Ising model without outfield 

 (through Taylor expansion at M when =0)

Since 
series in x

,we notice that the coefficient

of  in the free energy is positive.

If , the only minimum of free energy is at M=0, this corresponds to 

paramagnetic phase.

If , the minimum can be found in two places,  and , which means the 
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symmetry  is spontaneously broken. This corresponds to ordered states. See 
Figure below:

Fig 3.2 

Which states (  or ) is chosen depends on how the limit of 

applied field  will give rise to some non-zero magnetization. In the ferromagnetic phase
this non-zero magnetization will survive even in the limit of 

, the figure is different:

Fig 3.3 

We thus conclude there will be a first order phase transition at the point when  is 
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vanished at  or 

[2] Blume-Capel Model

The Blume-Capel model is different from [1] in its additional term , which allows 

the coefficient of  in the free energy to change sign.Therefore the coefficient of  
may happen to be negative, and so the above diversity of free energy with respect to M 
can be interpreted in the following figure: 

 

Fig 3.4

Here , similar to  in [1], is also the first order phase transition critical point. (When  

in the free energy vanishes)
From Sec. 2 we know there is a tricritical point where the first order phase transition 
turns into the second order phase transition. The tricritical point can be obtained when 

both  and  vanishes.

3.2 Two Dimension Case
We give the result here without proof. On a square lattice, the Blume-Capel model 

exhibits two equivalent, ferromagnetic ground states A and B, for ; and 

one ground state, , for . At (D/J) (with (2) = 0) the ferromagnetic phases A 

and B undergo an order-disorder transition which is second-order for  < 1.945, 

tricritical for D/J  1.945 and first order for 1.945 <  (d=2). 
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3.3 Observable and Critical Exponents

Energy Density 

lnZ=

E=

Specific Heat C

C=

Magnetization Density

 (see 3.1), we can only solve it by using graphical method.

Susceptibility
To be implemented.

Critical Exponents
The numerical results for the tricritical point are for the Blume-Capel quantum spin 
model with 
 = 0,   = 0.910207 , 

Reference
1.Cardy J. Scaling and Renormalization in Statistical Physics (CUP, 1996)(T)(252s)
2.Uzunov D.I. Introduction to theory of critical phenomena (WS)(KA)(T)(461s)
3.Henkel M. Conformal invariance and critical phenomena (Springer, 1999)(ISBN 
354065321X)(K)(T)(434s)
4.Yang, Z. R. (2007). "Quantum Statistic Physics." High Education Press: 421.
5.Domb C., Lebowitz J.L. (eds.) Phase Transitions and Critical Phenomena v.12 (Academic
Press, 1988)(ISBN 0122203127)(T)(K)(498s)	
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Ising Model
Edited by Li, Zimeng

Contents:
1. Describe the exact solution of Ising model is 1D
  1.1 Taking no regard of outfield
  1.2 Considering Outfield
2. The exact solution of the critical point on the square lattice
3. Summarize the critical exponent for d>2
4. Summarize the generalization of Ising model to Potts model
  4.1 Ordinary Potts model
  4.2 Chiral Potts model
  4.3 Use duality relation to locate the critical point of the ordinary Potts model on 
square lattice

1. Describe the exact solution of Ising model is 1D

1.1 Taking no regard of outfield

[1]Taking free border condition

Define ,then

So, Z=

Correlation Function:G[N]=<

 is correlation length,

Thus, we can plot the relation of correlation function and r or N
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N

0 2 4 6 8 10
0

1

[2] Take the period border
We have 

Note that when T
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(2)(2)

1. 1. 

(1)(1)

We will derive observables below:

Energy
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2. 2. 

(3)(3)

(5)(5)

(4)(4)

(2)(2)

K

2 4 6 8 10
0

Figure 2, y:E, x: K
Heat Capacity
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(6)(6)

(5)(5)

(8)(8)

(2)(2)

(7)(7)
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(10)(10)

(5)(5)

3. 3. 

(9)(9)

(2)(2)
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3

Figure 3,  x:K, y:C

Correlation Function
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(11)(11)

(13)(13)

(2)(2)
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(5)(5)
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4. 4. 

(5)(5)

(2)(2)

T

0

So, 1 D Ising has no phase change at none-zero temperature, or 1 D Ising model has no 
phase change;

Partition Function
evaluate at point
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5. 5. 

(2)(2)

6. 6. 

(5)(5)

K

5 6 7 8 9 10
0

Fig 6 x:K, y:Z, N=10
Magnetism Intensity =0

Magnetism susceptibility =0

1.2 Considering Outfield
1.Magnetization
First we should derive the partition function by using the matrix method -
Taking the periodic border condition,

Z=



Adv. Sta. Phy.Homework 3 Ising Model Li,Zimeng PB06203182

(2)(2)

(14)(14)

(5)(5)

(15)(15)

Define matrix 

Then Z=tr(

and P=
eigenvalues
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(2)(2)

(5)(5)

(15)(15)
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(2)(2)

(5)(5)

(15)(15)
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(3)General consideration
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(2)(2)

(5)(5)

(16)(16)

(15)(15)
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x:K, y:M

2.Magnetism susceptibility

3.Energy
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(2)(2)

(17)(17)

(5)(5)

(15)(15)
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(2)(2)

(17)(17)

(5)(5)

(15)(15)

1 2
0

Fig 9 x:K, y:E
4.Heat Capacity

differentiate w.r.t. T
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Fig 10 x: K,y: C

5.Correlation function G

G=<
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Fig 11 x:K, y:G
6. Partition Function



Adv. Sta. Phy.Homework 3 Ising Model Li,Zimeng PB06203182

(18)(18)

(2)(2)

(19)(19)

(17)(17)

(5)(5)

(15)(15)

0 2 4 6 8 10
0



Adv. Sta. Phy.Homework 3 Ising Model Li,Zimeng PB06203182

(2)(2)

(17)(17)

(5)(5)

(15)(15)

(18)(18)

Fig 12

2. The exact solution of the critical point on the square lattice

We define our effective Hamiltonian as 

We introduce in the following variables:

We have ( )

Therefore 

=

So 

We here introduce in the Bragg-Williams method

We define  and 

We therefore rewrite the effective Hamiltonian as 

We suppose 
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(18)(18)

(2)(2)

(17)(17)

(5)(5)

(15)(15)

We get 

Partition function Z=

where 

we replace lnZ with its largest term. We use Sterlin formula and get

We can find when will the above equation gets its largest term by deriving it with 
respect to I and set it to zero, and we get

 (2.1)

We find I happens to connect with M by 

We can solve (2.1) by diagram method.See figure below
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(18)(18)

(2)(2)

(17)(17)

(5)(5)

(15)(15)

0 1 2 3

1

2

=1.5

Fig 13

Here we define 

We have the solution through diagram method:

I=0 ( ) 

I=

It is easily seen that I=0 means there is no self-magnetization, which corresponds to 
high-temperature limit. I=  shows there are two ordered states or ferromagnetic 

states in low temperature. Thus we obtain the critical temperature at 



Adv. Sta. Phy.Homework 3 Ising Model Li,Zimeng PB06203182

(2)(2)

(17)(17)

(5)(5)

(15)(15)

(18)(18)

3. Summarize the critical exponent for d>2

We will use d=2 for an example here. We simplify 

We need to solve a transcendental equation when trying to obtain L(definition see 
below)
Especially when there is no outfield, we have

evaluate at point

evaluate at point
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(18)(18)

(2)(2)

(17)(17)

(5)(5)

(15)(15)

L

0 1 2 3

1

2

=1.5

Fig 14 x:L, y: tanh(KL)

, we have 
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(2)(2)

(17)(17)

(5)(5)

(15)(15)

(18)(18)

W

0 1

L

0

1

Fig 15 x: A=

We have 

Partition Function has the following expression:

number,W is magnetism energy and J is the energy of spin interaction.
T>
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(2)(2)

(17)(17)

(5)(5)

(15)(15)

(18)(18)

C=

Therefore, heat capacity experience mutation at 

When there exists outfield, the transcendental equation is L=tanh

M=

4. Summarize the generalization of Ising model to Potts model
4.1 Ordinary Potts model
The difference of q-states Potts model  to Ising model is that it allow to take q different 
values on each site

The Ising model is recovered if q=2. Defining  , we have 
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(2)(2)

(17)(17)

(5)(5)

(15)(15)

(18)(18)

 and, up to a multiplicative factor in the coupling J and a trivial 

additive constant, the Ising Hamiltonian  recovers.

4.2 Chiral Potts model
A variant of q-states model is the clock model, but which is equivalent to the q-state 
Potts model only for q=2,3. The clock model is defined as 

An variant of the clock model is the chiral Potts model, which sometimes is referred to 
as asymmetric clock model. The Hamiltonian is given as 

where (i,i')labels the points on the square lattice and  are free parameters.

4.3 Use duality relation to locate the critical point of the ordinary Potts model on 
square lattice
In q-states model, there is a disordered high-temperature phase and an ordered low-
temperature phase. They are related through a duality transformation. The partition 
function can be written as 

Considering a square lattice with N sites, we can calculate the contribution of individual 
spin configuration in (4.3.1) in a graphical way. We draw a bond between nearest sites i 
and i' if each of them is occupied with a variable and . We define the above 

configuration as graph G, and define b(G) as the number of bonds in G. We therefore 

have the contribution to the partition function as 

The sum over all configurations can be rewritten as , where the second sum

refers to possible values of  in a given cluster of G. We define n(G) as the number of 

disconnected nearest neighbours in the graph G, and so the second sum simply produce 
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(2)(2)

(17)(17)

(5)(5)

(15)(15)

(18)(18)

a factor 

Therefore Z=

Now we introduce in a dual lattice and dual bonds.See figure below.

Fig 16
The black dots are normal sites and the open dots are dual sites. Full lines make up 
graph G, and broken lines make up dual graph D. Note that the dual bond does not 
intersect with a bond of G.We define c(G) the number of loops in graph G and it's easily 
seen that each such loop would encircle a dual site. Each dual loop also encircles a 
normal site. We thus have 

The Euler relation says that for any graph , where N is the 
number of sites in graph G

We define the total number of bonds is B=b(G)+b(D), and  as the number of sites in 
graph D
Therefore the partition function can be written in the language of dual graphs

, we have B=2N, N= ,therefore we have
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(2)(2)

(17)(17)

(5)(5)

(15)(15)

(18)(18)

Thus we can proof the self-duality relation

 where 

 (4.3.2)

Any singularity occurring in a thermodynamic quantity at a critical point  is mapped

through the duality transformation to another coupling .And the critical point 

must be at the fixed point of the duality transformation. We thus solve the fixed point of

(4.3.2) and get 

The critical point is thus at 

Reference
1.Zhou,Z.F., Chao,L.Z.(2008). "Thermology, Thermodynamics and Statistic Physics" 
Science Press:231.
2.Yang, Z. R. (2007). "Quantum Statistic Physics." High Education Press: 421.
3.Henkel M. Conformal invariance and critical phenomena (Springer, 1999)(ISBN 
354065321X)(K)(T)(434s)
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Quantum Ising Model
Edited by Li, Zimeng

Contents:
1.Describe the phase transition in Quantum Ising model
  1.1 Introduction to Quantum Ising model
  1.2 Phase Transition in Quantum Ising model
2.Derive the mapping: a d dimensional quantum Ising model can be mapped onto a 
d+1 dimensional classical Ising model.
3.Suzuki-Trotter Formula

1.Describe the phase transition in Quantum Ising model

1.1 Introduction to Quantum Ising model
Quantum Ising model is the extension of Ising model to quantum situations, also a 
member of quantum spin model family.
1D quantum Ising model is also called quantum Ising chain. Instead of single spin 
direction in normal Ising model, the quantum Ising model uses three Pauli Matrixes to 
replace spin s ( .Similar to Ising model, we can define the Hamiltonian in Quantum 
Ising model:

where J>0 and  is a dimensionless coupling constant.

1.2 Phase Transition in Quantum Ising model
It can be shown through RG method that for non-zero temperatures, the critical 
behavior of the quantum Ising model reduces to the classical Ising Hamiltonian. For T = 
0, however, quantum effects do become important and must be included in the analysis.
We are not going to describe the finite-temperature phase transition here, but rather 
describe second-order phase transition at absolute zero temperature, where we can 
catch how a strong quantum effect modulates the phase transition.

In the thermodynamic limit N , the ground state of  exhibits a second order 
phase transition as g cross over a critical value ,we will illustrate below how to get the 

critical point of the phase transition.

First, consider the ground state for , when g=0, we have two degenerate 
ferromagnetic state.
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We define the ferromagnetic moment =-

At g=0 we have , and even in the thermodynamic limit, this ground state still 

survives for a small range of g ( ), but with .This can be proved by 

perturbation theory, and is also similar to the extension of first order line in the 
tricritical Ising model.(see Homework Blume-Capel Model Sec.2) Therefore the two 
ferromagnetic ground state remains and are still 2-fold degenerate.We notice that the 
symmetry is broken as the state is divided into two independent state  and 

Now consider the ground state for g ,when g= , we have a single nondegenerate 
ground state which mix and  (thus preserving all symmetries), the state is 

written as 

We can verify that this state has no ferromagnetic moment (which is in z direction):

Similar to the case of , the ground state is preserved for a finite range of large g (g
),we can view this ground state as a result of strong quantum fluctuations, as the 

mixed state shows quantum tunneling between spin up and spin down.

Therefore, the very different ground states of  and  indicates that the 
ground state cannot evolve smoothly as a function of g. There must be singularity at 
some point as a function of g for the quantum Hamiltonian, and g=1 is the nonanlytical 
point.

We thereby conclude the critical point for the second order quantum phase transition at
g=

2.Derive the mapping: a d dimensional quantum Ising model can be mapped onto a 
d+1 dimensional classical Ising model.
The mapping is a bridge between quantum field theory and classical statistic physics.We 
shall see below how quantum quantities is connected with statistic quantities.
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Considering a quantum mechanical d dimensional system, we define the time-evolution 

operator 
Now take the time difference between t' and t to be infinitesimal, and we can write the 
transition amplitude  between via the Feynman path integral

 
The above path integral language is based on the Suzuki-Trotter formula (see Sec.3). We 
can use it in quantum field theory to solve quantum Ising chain problems. A most 
common method is the Landao Ginzburg Wilson method or LGW method. In Sec. 1.2, we
have given a simple description of states when  and . In order to discuss 

phenomena around the critical point, we have to turn to region of . 

Following the LGW strategy, we have to first identify an order parameter, which 
distinguishes the two very different ground phases described in Sec.1.2. This order 
parameter is just ferromagnetic moment  (see Sec.1.2). Using coarse grain strategies 

in RG method,we coarse-grain these moments over some finite averaging region, and at 
long wavelengths this yields a real order parameter field a measure of the local 
average of  as defined in Sec.1.2. 

The second step of LGW method is to write down a general field theory for the order 
parameter.As we are dealing with a quantum transition,the field theory has to extend 
over spacetime, with the temporal fluctuations representing the sum over histories in 
the Feynman path-integral approach. Thus we will write down (2.1) as the needed field 
theory, with the Hamiltonian replaced by the Landao Ginzburg Wilson Hamiltonian. We 
shall note that the integration above is d+1 spacetime (+1 is the time dimension) 
dimensional where Ising model corresponds to d=1 case, although it is a d dimensional 
quantum model.
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We will now show how the above functional integral is connected with analogous 
expressions in the language of statistic mechanics.
We consider a statistical system on a d+1 dimensions hypercubic lattice, and define one 
of its dimension as time and the other d dimensions as space.
Consider two times  and their time-dependent Ising spins, the transfer matrix  

links the two configurations and has the elements:

The partition function Z can thus be written:
Z=

 (2.2)
where M is the number of sites in time direction and periodic boundary condition |

is assumed.

Compare the transition amplitude in (2.1) and the partition function in (2.2), we can 
write the correspondence between statistic physics and quantum mechanics.

 

We have  which the quantum Hamiltonian is defined.

Therefore we obtain a map of a d+1 dimensional problem with classical variables onto a 
d dimensional problem with quantum variables. 

3.Suzuki-Trotter Formula
In the derivation of (2.1), we have used the Suzuki-Trotter Formula, which we will 
illustrate below:

The path integral arises from the fact that  (3.1)
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The propaganda operator is the Green function  and we 

use (3.1) to rewrite it as

 (3.2)

We can prove that 

The correspondence between (3.2) and (3.3) is just one example of Suzuki-Trotter 
Formula.We are not going to derive (3.3) from (3.2) here, as we have learned it in the 
Advanced Quantum Mechanics Course.However I would like to give the definition of 
general Suzuki-Trotter Formula below:

THEOREM: (Suzuki-Trotter Formula) Let A and  be linear operators on a Banach space X
such that ,  and A+B are the infinitesimal 

generators of the contraction semigroups , , and  respectively. Then for all 

we have 

Reference
1.Françoise J., Naber G., Tsun T.S."Encyclopedia of Mathematical Physics; Elsevier; 2006"
(3246)
2.Henkel M. Conformal invariance and critical phenomena (Springer, 1999)(ISBN 
354065321X)(K)(T)(434s)
3.Techniques and applications of path integration (Wiley, 1981 Schulman L.S. 375s)
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1.Definition

XY Model is a continuous spin system with its spin s=(sx,sy), so it is a two-dimensional 
spin system with its two order parameters (n=2). This type of system (d=2, n=2) is called 
KT phase transition.

First we define , and here  is the phase angle. Thus we can conclude the 

Hamiltonian for XY Model:

 (1.1)

Here the sum is counted so that i,j is not repeated, otherwise we have to multiply a  

factor ahead of (1.1)
Because the sum is calculated within the nearest neighbours, therefore we can expand 
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and so H=  (1.2)

There are two parts in the above equation, the first part is irrelevant to spin, and we will 
omit it later. The second part can be transformed into continuous form by the following 
steps:

Define ,

therefore

2.XY Model is frequently used to describe the universal behavior of Mott-insulator and
superfluidity phase transition. Why it is possible?

2.1 Mott-insulator 
The first successful theory to describe the metals,insulators and transition between 
them is the noninteracting electron theory. This theory, or band theory, says that 
insulators have their highest filling band fully filled, and metals are just partially filled. 
But this theory failed to describe some metals and insulators that contradict the stated 
band filling. And later we found that electron-electron correlation, or the strong 
Coulomb repulsion of the filling electrons cannot be ignored, which leads to Mott's 
theory and the word - Mott insulator - to describe strong Coulomb repulsion state. The 
transition between metals and insulators is called MIT or Metal Insulator Transition. 

In Mott's opinion, a large Coulomb repulsion would split the band in two. The lower 
band consists of electrons that occupy empty sites with each site one electron, while the
upper band consists of sites fully filled by electrons. Thus the lower band would be full 
and leads to an insulator.

2.2 Hubbard Model
A prototype of theoretical understanding of MIT is the Hubbard model, which simplifies 
that electrons are only in a single band. Two most important parameters in Hubbard 
model is the correlation length U/t and the filling n, see Fig 2.2.1 below
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Fig 2.2.1
There are two modes of the transition, the first one is filling-control MIT, or FC-MIT; And 
the second one, BC-MIT or band-control MIT is another case. We are not going to dip 
into the transitions here, but will take a look at how XY Model connects with the Mott 
insulator. U and t in the above figure will be defined below.

The Hamiltonian of the Hubbard Model in the second-quantized form is given by (where 
we define two wave operators - on site i and on site j)

,  (2.2.1)

N=

So  is the kinetic part and U is the Coulomb potential. From the above Hamiltonian, 
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we can see Hubbard Model takes tremendous simplifications. It only takes into 
interacting of the nearest neighbours, and neglects multiband effect. However, it still 
works fine with MIT transitions and the Mott insulating phase.As we have stated before 
(see Sec. 2.1), the Mott insulating phase appears only at half filling sites.For the nearest-
neighbour Hubbard model on a hypercubic lattice, the band structure of the 
noninteracting part is described as (see to (2.2.1))

 (2.2.2)

We have used Fourier transform in the above derivation. 

Therefore, the parameters in the Hamiltonian depend on the direction of i-j. We 
compare (1.1) with (2.2.2), and thus we conclude that Mott-insulator can be described 
by XY model.

Note the Hubbard Model here has ignored degeneracy of both obitals' and spins'.It 
comes into degenerating Hubbard Model when introducing in obital and spin freedoms. 
To introduce in the spin interaction, we just need to multiply the original Hubbard 

Hamiltonian with . It should be noted here that XY type or Ising type anisotropy for 

the spin exchange also easily occurs.

2.3 Superfluid-insulator transition
The situation for bosonic superfluid-insulator transition is simpler than the fermionic 
Mott-insulator transition, similar to the Hubbard Model, we can write the Hamiltonian 

for the interacting bosons as follows (with boson operators this time)

b

 

Similar to Fig 2.2.1, the system undergoes bandwidth-control phase transition from 
Mott insulator to superfluid when U/t is changed. Also, when U is large, the Mott 
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insulating phase appears similarly to the fermionic case.

We can use path integral method to solve the criticality. First we write down the action

Similar to the derivation of Hubbard model, the above action can be mapped into d+1 
dimensional XY model. So the universality of superfluid-insulator transition can also be 
described by XY model.

3.Mermin-Wagner theorem - 2D XY Model has no long-ranged ordering at non-zero 
temperature

3.1 Spin Correlation
To demonstrate the above theorem, we first look at the correlation of the spins 
between two sites:

and we can demonstrate that this equals to 

Proof:

In order to demonstrate it, first we can draw from the second part of equ (1.2) that 

=
 expand 

So the Hamiltonian would have the common form of binomial 

We introduce a generate function , and 

Here < >=0 can be easily drawn, so when we derivate  and  from the above equation,

and set , we get,

, and so ,

the above equation has set ,
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Proof done

Once we have solved , we solve , we use Fourier Transformation or FT method

to solve .

3.2 

We define correlation function 

and its counterpart in momentum space 

, where k'=-k

Because 

Therefore 

(3.2.0)

so 

The above derivation used Gauss Integration, 

When d=2, we get 
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Here r=i-j, k'=-k (see previous proof),and the last part has changed rectangular 
coordinates to polar coordinates, 

), and  is just the momentum part of the lattice constant a, and 

therefore we can approximate ,

Noticing 

We integrate the above equation by , and the second part 

Therefore,

 (3.2.1)

as , so  (3.2.2),

as therefore the largest part of equ (3.2.2) is , and we can

approximate the lower limit of (3.2.1) by 

so 
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(3.2.3)
and there goes 

(3.2.4)

The long-range correlation is thus power-law decreasing (see (3.2.4)), and from (3.2.3) 
the angle deviation is increasing with r increased.
Therefore there couldn't be long-ranged correlation in 2D XY model.

4.Summarize the phase transition of Classical XY Model in 1D,2D,3D and more

4.1 1D Ising Model
The phase transition of Ising Model is done on another article - Ising Model (Homework 
3)

4.2 2D XY Model - KT phase transition
The derivation in Section 3 is based on a continuous function of , and so inconsistent 
with situations when vortice state occur.The spin experience  mutation in a loop and 
so we divide the loop into two parts, one is  (describing vortice state) and the other is 

(describing spin state).

, and and  , we define 

Here q is the vortice quantum number, s is the arc length and ds=rd

It can be easily drawn that 

Thus (3.2.0) can be rewritten as 
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Here L is the length of lattice and a is lattice constant. 
Whether the vortice state is stable can be decided by whether it can minimize the free 
energy at some conditions. We write down the free energy:

When we have is the transition 

temperature when vortice state become stable or unstable.

And this  is thus called KT critical temperature 

4.3 3D - Heisenberg Model
To be implemented

Reference
1.Yang, Z. R. (2007). "Quantum Statistic Physics." High Education Press: 421.
2.Masatoshi Imada, A. F., Yoshinori Tokura (1998). "Metal-insulator transitions." 
Reviews of Modern Physics 70(4).
3.Henkel M. Conformal invariance and critical phenomena (Springer, 1999)(ISBN 
354065321X)(K)(T)(434s)
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Contents:
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2. Kitaev model
3. Wen model

1. Fractional Statistics
Particles in 3D are either bosons and fermions. In 2D, however, particles can obey 
fractional statistics(anyons).

We use  of the wavefunction to identify the phase change and the statistics of 
identical particles.If the Hamiltonian doesn't contain long range interactions, but only 
two nearest neighbours, we have the two particle configuration doubly connected and a
double interchange must give back the original wavefunction in 3D or higher 
dimensions, leading to even (bosons) or odd (fermions) wavefunction. 

This effect makes  accumulates 0 (bosons) and  (fermions) only, saying ,  

is 0 for bosons and 1 for fermions.While in 2D, the configuration space is infintely 
connected and  is arbitrary(anyons).Anyons are particles which satisfy fractional 

statistics.The case which  is  corresponds to Quasiparticles half way between bosons 

and fermions, namely semions.

2. Kitaev model
See Ref.3 and 4

3. Wen model
See Ref.3 and 4

Reference
1.Zee A. Quantum field theory in a nutshell (Princeton, 2003)(T)(ISBN 0691010196)
(534s) 
2.Karlhede, Kivelson, Sondhi. The quantum Hall effect (Jerusalem 2002 winter school)(T)
(109s)
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Contents:
1. Gauss Model
  1.1 Introduction
  1.2 Momentum Space Gauss Model
  1.3 Renormalization Group in Momentum Space
  1.4 Derive the Gaussian fix points and Critical exponents
2. Define RG in the language of Ginzburg-Landau model
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1.Gauss Model
1.1 Introduction
Gauss model is a generalization of Ising model. We extend the domain of  in Ising 

model to infinity, and introduce in weighing function 

Therefore the partition function changes to , 

where K=

Actually, Z does not vanish only when , which corresponds to Ising model.

In Gauss model we change the weighing function to the form  to ensure 

convergence since the domain has been extended to infinity.

Therefore the partition function  with 
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 (1.1.1)

Adding outfield, we have the effective Hamiltonian 

1.2 Momentum Space Gauss Model
Changing it to momentum space by FT method, we have

 and , where the range (

)is the first Brillouin zone and a is the lattice constant.  is the volume of 

primitive cell and we have 

The first term of (1.1.1) is rewritten as 

=

where B(k)=K

and 

Note that when calculating B(k) only nearest neighbours are considered.
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The second term of (1.1.1) is rewritten as 

Therefore Z can be rewritten as 

The free energy is F=

Because  and B(k)  (see (1.2.1))

Therefore the singularity can only occur when b=B(0)=2Kd=-2d , which can be used 

to identify critical temperature 

Since only k=0 has a significant impact on the free energy, we thus expand the cosine in 

(1.1.2) at k=0 to , thus

 in effective Hamiltonian is calculated as 

The effective Hamiltonian is thus +

We change the sum to integration and get +  

(1.2.2)

where 

1.3 Renormalization Group in Momentum Space
Two steps in RG method: Coarse Grain Transformation and Rescaling process.
[1]Coarse Grain Transformation
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In the coarse grain transformation, the real length is increased to b times large, which 
corresponds to a b times decrease in momentum space.So we need to integrate out the 

momentum length which is larger than ,or the short wave section (since k= ), 

 is the lattice constant in momentum space.

We divide k into two parts: (define l as the length of spin block or coarse grain, l is just 
the rescale factor b above)

Long wave part 

Short wave part 

We also divide spin into two parts:  , L means long wave and S 

means short wave,thus  in (1.2.2) is 

Therefore (1.2.2) can be rewritten as +

And Z=
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So free energy is 

Since the singularity of f occurs at k=0 in the long wave section, therefore the second 
part of f has nothing to do with critical phenomena (which is singular). We will thus omit
short wave part in H and f. We have

 (1.3.1)

This is the coarse grain transformation.

[2]Rescaling
We need to rescale in order to remove the difference between (1.2.2) and (1.3.1) 

We introduce in lk=k' and  where  is the rescaling of spin

Define r'=  and h''=h'

We have 
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Compare (1.2.2) with above, we conclude  and we return to (1.2.2) and get 
the following RG recurrence relation or RG transformation:

1.4 Derive the Gaussian fix points and Critical exponents
We obviously get one unstable fix point (0,0) in the RG recurrence relation (1.3.2) above

Referring to Appendix 1, we have =

where  and  are eigenvalue of RG transformation (1.3.2)

With the following known relation:

We conclude

2.Define RG in the language of Ginzburg-Landau model
2.1 Introduction to Ginzburg-Landau Model
In Ginzburg Landau model we change the weighing function to the form 

 to ensure convergence since the domain has been extended to 

infinity. (see Sec. 1.1)

We thus get the known  model (or  model), which Z is rewritten as 
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because its Hamiltonian is  with  contained.We'll return to 

Gauss Model if we set u=0.
We set the coordinate in the above equation to a continuous state, where we would set 

 and the coefficient unity.

So we get , here the field term  is added.

Changing it to momentum space by FT method, with previous work done on Gauss 

model (see (1.2.2)), we only have to deal with the term 

Therefore effective Hamiltonian without outfield in momentum space is (see (1.2.2))

 (2.1.1)

where 
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2.2 RG solution on G-L model
[1] Coarse Grain Transformation
Similar to section 1.3, we will divide k and s into short wave (subscript S) and long wave 
(subscript L) parts. Therefore (2.1.1) can be rewritten as 

 where 

Here  stands for the first term in (2.1.1) and  stands for the 

second term in (2.1.1)
Because the first term can be divided independently while the second term has 
couplings.

where  and 

 corresponds to the short wave part, which has no singularity (See Sec. 1.3.[1]) and we 
can thus take it as constant and omit it.

Note that  is a Gauss function and there is a mathematic theorem for the Gauss 
distribution:

Therefore, 

So  (2.2.0)

The above equation has the short wave part  integrated out and so the integration 
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range is the long wave part (- )

[2] Rescale
We introduce in the following transformation (see Sec. 1.3.[2] and (1.3.2))

And we replace the corresponding items in (2.2.0), which needs the calculation of 

, and get

 (2.2.2)

Compare (2.2.2) and (2.1.1) we derive the RG transformation (the expression of and 

),which is calculated in detail below. The demonstration of (2.2.1) is also done below.

[3]Calculation of 

There are two parts in the above equation, and we now calculate the first part.

V=  and 

We need to calculate 
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 by means of 

=  

(2.2.3)

=  

Put (2.2.3) into the above equation we get five parts, which are shown separately below.

The first term
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We have used (2.2.2) in the above derivation.
The Second term

 contains no  , so it contains no singularity and  

(see 1.3.[1])
The third and forth term
Because  is a Gauss integration, so odd number of  or  will make the integration 

zero.

The fifth term

We need to calculate  here and the integration is Gauss type with 

exponent 

=
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 (see (2.1.1))
Therefore

=   (2.2.4)

Here we have used relation  and 

Therefore we have 
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In the last equation above (rescaling process), we have first, only rescaled 
and second, the term

  since  (see 2.2.4)

Therefore, the approximate form of Hamiltonian in (2.2.0) is (only the first part of 

 is considered.
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where we have concluded the following RG transformation

If the second part of , saying, , is also considered,we would have to 

use Feynman diagram to solve the quadratic term.
We will not draw the full Feynman diagram solution here, but will give the result:
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where

(2.2.5) is just the RG transformation of Ginzburg-Landau model.

3.Derive the new fixed point in d=4-  dimensions and the associated critical exponents
Refer to (2.2.5), we have defined d=4- here we would not limit d to integer, therefore 
if d is near 4, we can expand the I at d=4 in (2.2.5) with respect to a small 

Generally, we can solve the following integration if it has spherical symmetry, 

Therefore we have
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 where 

Therefore we rewrite (2.2.5) as 

We have expanded  in the above derivation
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There're two fixed points in the RG relation above. The first is Gauss fixed point (0,0)
The second is called WF fixed point showing below

In order to solve associated critical exponents, we have to solve the eigenvalue of (3.1)

 Here 

eigenvalues
=

And

eigenvalues

=

Their eigenvectors are the same:
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The following discussion is based on a small  or d 

When d>4 or , so the Gauss fixed point is unstable at e , but stable

at e , so the Gaussian fixed point is a critical point and e  is the critical surface.

On the other hand, so the WF fixed point is unstable and not a 

critical point.
The Critical Exponent can be drawn from

We thus get

When d<4 or , , the Gaussian fixed point is 

unstable and the WF fixed point is stable at  We draw the critical exponent of WF 

fixed point:

4. Explain the Universality by RG
The RG transformation relation is

 
where M is the RG transformation Matrix and K can be seen as the interaction in Ising 

model 

 

where e  is the eigenvector of M  and  is the eigenvalue of M
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Because M is not usually symmetric, the left eigenvector and the right eigenvector may 
not be the same, and thus we get

M  (This is the property of RG) and we get (4.1)

We conclude  if it satisfies (4.1)

Therefore, 

Thus we can divide the following situations:

y >0,  will become larger and larger, thus unstable

y <0,  will become zero in the end, thus stable

=0,  won't change

We define the eigenvector of M in the case y <0 the critical surface, and all the points on

the surface would go towards to the fixed point after the RG transformation.If the 
Hamiltonian of a system happens to be on the critical surface, then the critical behavior 
of this system will be the same as that of the fixed point. Therefore, all systems which 
lay on the same critical surface belongs to the same university, although their 
Hamiltonian may be totally different. The following fig would help explain the 
universality. The systems, A,B,C, all belongs to a same universality since they all fall on 
the same critical surface.
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A

B

Fig 4.1
Reference 
1.Yang, Z. R. (2007). "Quantum Statistic Physics." High Education Press: 421.
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Markovian-chain Monte Carlo
Edited by Li, Zimeng

Contents:
1.Introduction
  1.1 Simple Sampling
  1.2 Importance Sampling 
2.Markov Process
3.MCMC application on 2D Ising model

First, we have learned the MCMC method in Computational Physics, therefore I would 
only give a brief review of the method and, second, an extension to the 2D Ising model.

1.Introduction
Partition functions and functional integrals (path integrals) reduce many-body problems 
to complicated multidimensional integrals or sums.

The Monte Carlo technique has its origins in the numerical evaluation of integrals. The 
technique was later generalized to calculate the partition function and the mean value 
of observables in classical systems. 
 
The key of numerical integration is sampling. There are many sampling methods in 
Monte-Carlo method. We will only introduce two of them here.

1.1 Simple Sampling
We first generate random numbers  uniformly distributed in [a,b], and get the 

probability density of these points:

We can calculate the expectation value of a function f with respect to the distribution P:

E(f(x))=

In order to calculate the above integration I in a numerical way, we define the Monte-
Carlo Integral  
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where  (1.1.1)

Due to the Central Limit Theorem, we have 
E[  ]=

Therefore we can use (1.1.1) to calculate the Integral 

1.2 Importance Sampling 
In order to dismiss the dramatic change in functions which might lead to great error in 
the numerical integration in the simple sampling method, we introduce in important 
sampling to select points according to the trend of function, and this selection is 
previously set.
Referring to (1.1.1), we change it to 

In importance sampling, P is relevant with , and therefore we have 

We can also demonstrate that E[ ]=I in the sense of central limit theorem.

An application of importance sampling will be illustrated here. In statistic physics, an 
observable is calculated in the following means:

 

This is easily done by simple sampling method, but the exponent function is such a 
dramatic function that we would use important sampling instead to increase efficiency. 
Therefore we write:

(1.2.1)

if P  is carefully selected so that it is proportional to the distribution e , we will 

get instantly that
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However, P  cannot not be easily solved on many conditions. We would use Markov 

Process instead to solve this problem.

2.Markov Process
Markov process is an example of 'random walk' through phase space in a series of . 

We would first give the three properties of Markov chain below:
[1]
[2]

[3]f(x)

 means the probability that a point transfer from site x to site x'. [1] is 
obvious. [2] says the random walk is not restrict to history, the sites can be visited many 
times, and we will finally reach to the border or equilibrium state. We call this 
"ergodicity hypothesis". [3] is just the learned "detailed balance" where the equilibrium 
distribution f(x) is reached.

How to efficiently converge in the Marcov Chain depends on the selection of ,
which has a large freedom to choose. A simple choice is seen below, also known as the
Metropolis method.

How to pursue the random walk? We use (1.2.1) as an example and use Metropolis 
method. We define the transition probability as

Following Metropolis, we choose another transition probability p, which reads

or 

Then follow the following steps:
[1] Select a site i, and its first random step to the nearest neighbour i'
[2] Compute 

[3] Calculate , if , then p=1, accept the spin value of this site; otherwise, 

go to [4]
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[4] Generate a random number r in the range [0,1]. 

[5] If r< , flip the spin, saying, , otherwise leave on the site i and go to [1] 

again.

3.MCMC application on 2D Ising model

The known 2D Ising model without outfield is 

The calculation of observables can be found in (1.1.1), we follow the following steps:

[1] Generate random configurations of spins, initiate variables
[2] Importance Sampling to choose efficient configurations.

We select P=  as the probability distribution. (see Sec.1.2) 
[3] Generate a Markov chain to sample all these configurations stochastically. 
We define a "random walker" to sweep the space of configurations {s} rather than 
choose them independently. The random walker is achieved in Sec.2. 
[4] Data storage
In order to store the transition probability p defined in Sec.2, we make a look-up table to

store values for every site. Because in 2D Ising model, we have 4 nearest neighbours 
around a site and each site can have two possible values. Adding the site itself we have 

2 possible values. 
[5] Perform a sufficient number of iterations for thermalization. 
[6] Carry out measurements and store the associated numbers. 
[7] Compute total averages and statistical errors. 

The program is put in the appendix, and you can also refer it to reference 2.
Some result of the program is seen in the figure below
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Fig 3.1
Reference
1.Ma, W.K. "Computational Physics" (Science Press) (2005)
2.Dagotto E., et al. Nanoscale phase separation and colossal magnetoresistance (physics 
of manganites) (Springer, 2002)(463s)
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PB06203182  Advanced Statistic Physics Homework 2
By Maple 13

1. What's the relation between observables and correlation function?
Ans:

As to Ising mode, we have 

And 

Therefore,

2. How MFT, especially Brag-William Model, draw solution of critical exponent? 
(Group 3)
Ans:

We need to solve a transcendental equation when trying to obtain L(definition see 
below)
Especially when there is no outfield, we have

evaluate at point

evaluate at point
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L

0 1 2 3

1

2

=1.5

Fig 1 x:L, y: tanh(KL)

, we have 
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W

0 1

L

0

1

Fig 1 x: A=

We have 

Partition Function has the following expression:

number,W is magnetism energy and J is the energy of spin interaction.
T>
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C=

Therefore, heat capacity experience mutation at 

When there exists outfiled, the transcendental equation is L=tanh

M=
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PB06203182  Advanced Statistic Physics Homework 1
By Maple 13

1.Derive the correlation function of Ising model with variable r or N.
Ans:

[1]Taking free border condition,define ,then

So, Z=

Correlation Function:G[N]=<

 is correlation length,

Thus, we can plot the relation of correlation function and r or N
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N

0 2 4 6 8 10
0

1

[2] Take the period border, we have 

Note that when T

2.Taking period border condition, when the number of spots is 10, what is Z?



Adv. Sta. Phy. Homework Class Homework Li,Zimeng PB06203182

(1)(1)

(2)(2)

1. 1. 

Ans:

3.How do Energy, heat capacity, magnetic susceptibility, 
correlation function and partition function change with K? Draw its picture, and can 
you conclude that 1D Ising model has no phase change?
Ans:
[1] Taking no regard of outfield

Energy
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(2)(2)

2. 2. 

(4)(4)

(5)(5)

(3)(3)

K

2 4 6 8 10
0

Figure 2, y:E, x: K
Heat Capacity
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(8)(8)

(2)(2)

(7)(7)

(5)(5)

(6)(6)



Adv. Sta. Phy. Homework Class Homework Li,Zimeng PB06203182

(9)(9)

(2)(2)

3. 3. 

(10)(10)

(5)(5)

0 2 4 6 8 10
0

1

2

3

Figure 3,  x:K, y:C

Correlation Function
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(2)(2)

(11)(11)

(13)(13)

(5)(5)

(12)(12)

K

0 2 4 6 8 10
0

1
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(2)(2)

4. 4. 

(5)(5)

T

0

So, 1 D Ising has no phase change at none-zero temperature, or 1 D Ising model has no 
phase change;

Partition Function
evaluate at point
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5. 5. 

(2)(2)

6. 6. 

(5)(5)

K

5 6 7 8 9 10
0

Fig 6 x:K, y:Z, N=10
Magnetism Intensity =0

Magnetism susceptibility =0
[2]Considering Outfield
First we should derive the partition function by using the matrix method -
Taking the periodic border condition,

Z=

Define matrix 
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(15)(15)

(2)(2)

(5)(5)

(14)(14)

Then Z=tr(

and P=
eigenvalues
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(2)(2)

(5)(5)
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(2)(2)

(5)(5)

(16)(16)

0 1 2 3 4 5
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20
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100

(3)General consideration



Adv. Sta. Phy. Homework Class Homework Li,Zimeng PB06203182

(2)(2)

(5)(5)

(16)(16)
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x:K, y:M
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(2)(2)

(17)(17)

(5)(5)

(16)(16)

2.Magnetism susceptibility

3.Energy
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(2)(2)

(5)(5)

(16)(16)

1 2
0

Fig 9 x:K, y:E
4.Heat Capacity

differentiate w.r.t. T
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(2)(2)

(5)(5)

(16)(16)
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Fig 10 x: K,y: C

5.Correlation function G

G=<
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(5)(5)
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Fig 11 x:K, y:G
6. Partition Function
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